Mtsym6, a gene conditioning Sinorhizobium strain-specific nitrogen fixation in Medicago truncatula.
نویسندگان
چکیده
The availability of a wide range of independent lines for the annual medic Medicago truncatula led us to search for natural variants in the symbiotic association with Sinorhizobium meliloti. Two homozygous lines, Jemalong 6 and DZA315.16, originating from an Australian cultivar and a natural Algerian population, respectively, were inoculated with two wild-type strains of S. meliloti, RCR2011 and A145. Both plant lines formed nitrogen-fixing (effective) nodules with the RCR2011 strain. However, the A145 strain revealed a nitrogen fixation polymorphism, establishing an effective symbiosis (Nod(+)Fix(+)) with DZA315.16, whereas only small, white, non-nitrogen fixing nodules (Nod(+)Fix(-)) were elicited on Jemalong 6. Cytological studies demonstrated that these non-fixing nodules are encircled by an endodermis at late stages of development, with no visible meristem, and contain hypertrophied and autofluorescent infection threads, suggesting the induction of plant defense reactions. The non-fixing phenotype is independent of growth conditions and determined by a single recessive allele (Mtsym6), which is located on linkage group 8.
منابع مشابه
The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021.
Medicago truncatula (barrel medic) A17 is currently being sequenced as a model legume, complementing the sequenced root nodule bacterial strain Sinorhizobium meliloti 1021 (Sm1021). In this study, the effectiveness of the Sm1021-M. truncatula symbiosis at fixing N(2) was evaluated. N(2) fixation effectiveness was examined with eight Medicago species and three accessions of M. truncatula with Sm...
متن کاملMicrosymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula.
The legume-rhizobial symbiosis results in the formation of root nodules that provide an ecological niche for nitrogen-fixing bacteria. However, plant-bacteria genotypic interactions can lead to wide variation in nitrogen fixation efficiency, and it is not uncommon that a bacterial strain forms functional (Fix+) nodules on one plant genotype but nonfunctional (Fix-) nodules on another. Host gene...
متن کاملHost-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula.
Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. Ho...
متن کاملRhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.
Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host ran...
متن کاملInsights into symbiotic nitrogen fixation in Medicago truncatula.
In silico analysis of the Medicago truncatula gene index release 8.0 at The Institute for Genomic Research identified approximately 530 tentative consensus sequences (TC) clustered from 2,700 expressed sequence tags (EST) derived solely from Sinorhizobium meliloti-inoculated root and nodule tissues. A great majority (76%) of these TC were derived exclusively from nitrogen-fixing and senescent n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 123 3 شماره
صفحات -
تاریخ انتشار 2000